ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Ye Wu, Michael Q. Wang, Anant D. Vyas, David C. Wade, Temitope A. Taiwo
Nuclear Technology | Volume 155 | Number 2 | August 2006 | Pages 192-207
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3756
Articles are hosted by Taylor and Francis Online.
A fuel cycle model - called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model - has been developed to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H2) production pathways for fuel cell vehicle (FCV) applications. In this study, the GREET model was expanded to include four nuclear H2 production pathways: (a) H2 production at refueling stations via electrolysis using light water reactor-generated electricity, (b) H2 production in central plants via thermochemical water cracking using heat from a high-temperature gas-cooled reactor (HTGR), (c) H2 production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam, and (d) H2 production at refueling stations via electrolysis using HTGR-generated electricity. The WTW analyses of these four options include these stages: uranium ore mining and milling, uranium yellowcake transportation, uranium conversion, uranium enrichment, uranium fuel fabrication, uranium fuel transportation, electricity or H2 production in nuclear power plants, H2 transportation, H2 compression, and H2 FCV operation. Our well-to-pump results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H2 compared to natural gas-based H2 production via steam methane reforming for a unit of H2 delivered at refueling stations. When H2 is applied to FCVs, the WTW results also show large benefits in reducing fossil energy use and GHG emissions.