ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Ye Wu, Michael Q. Wang, Anant D. Vyas, David C. Wade, Temitope A. Taiwo
Nuclear Technology | Volume 155 | Number 2 | August 2006 | Pages 192-207
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3756
Articles are hosted by Taylor and Francis Online.
A fuel cycle model - called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model - has been developed to evaluate well-to-wheels (WTW) energy and emission impacts of motor vehicle technologies fueled with various transportation fuels. The GREET model contains various hydrogen (H2) production pathways for fuel cell vehicle (FCV) applications. In this study, the GREET model was expanded to include four nuclear H2 production pathways: (a) H2 production at refueling stations via electrolysis using light water reactor-generated electricity, (b) H2 production in central plants via thermochemical water cracking using heat from a high-temperature gas-cooled reactor (HTGR), (c) H2 production in central plants via high-temperature electrolysis using HTGR-generated electricity and steam, and (d) H2 production at refueling stations via electrolysis using HTGR-generated electricity. The WTW analyses of these four options include these stages: uranium ore mining and milling, uranium yellowcake transportation, uranium conversion, uranium enrichment, uranium fuel fabrication, uranium fuel transportation, electricity or H2 production in nuclear power plants, H2 transportation, H2 compression, and H2 FCV operation. Our well-to-pump results show that significant reductions in fossil energy use and greenhouse gas (GHG) emissions are achieved by nuclear-based H2 compared to natural gas-based H2 production via steam methane reforming for a unit of H2 delivered at refueling stations. When H2 is applied to FCVs, the WTW results also show large benefits in reducing fossil energy use and GHG emissions.