ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Matthew J Memmott, Annalisa Manera
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 199-212
Technical Paper | Fission Reactors | doi.org/10.13182/NT14-103
Articles are hosted by Taylor and Francis Online.
Integral pressurized water reactors are innovative reactors in which all of the components typically associated with the nuclear steam supply system of a nuclear power station are located within the reactor pressure vessel. In order to facilitate this modification in large [∼1000-MW(electric)] light water reactors (LWRs), compact heat exchangers such as microchannel heat exchangers must be used. Previous attempts at using microchannel heat exchangers were unsuccessful since they are prone to vapor locking and crud blockage when the primary coolant boils. Therefore, the authors propose the use of a flashing drum to facilitate boiling in conjunction with a primary microchannel heat exchanger for a large integral LWR. The integral inherently safe light water reactor (I2S-LWR) is used as a basis for the implementation of this novel concept. The high-temperature, high-pressure secondary water generated in the secondary loop through heating in the microchannel primary heat exchanger of the I2S-LWR is sent to a flashing drum where 99.9% pure vapor is extracted and sent to the turbines. This prevents boiling in the primary heat exchanger that in turn reduces crud deposition, flow instabilities, and the potential for channel blockage or vapor locking in the small channel sizes of microchannel heat exchangers. The benefits and disadvantages of this approach are presented in this paper. Unfortunately, this innovative approach to nuclear steam generation for integral LWRs is challenged by a potential decrease in thermodynamic efficiency. Therefore, a sensitivity study is presented that explores the impact of several design variables on the thermodynamic efficiency of the plant. As part of this study, a simple and a complex Rankine cycle were modeled in order to determine the impact that system design modifications can play in recovering thermodynamic efficiency lost by the steam drum. Both cycles utilize turbines, condensers, and condensate/recirculation pumps, while the complex Rankine cycle utilizes a four-stage turbine with subsequent separation and open feedwater heaters. The optimized efficiencies for the simple and complex Rankine cycles are 31% and 33%, respectively, indicating that additional system enhancements to the power conversion system could compensate for the inclusion of a flashing drum.