ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Franco Polidoro, Michael Flad, Werner Maschek
Nuclear Technology | Volume 191 | Number 3 | September 2015 | Pages 246-253
Technical Paper | Reactor Safety | doi.org/10.13182/NT14-97
Articles are hosted by Taylor and Francis Online.
In the case of a severe accident in a core resulting from unprotected loss of flow (ULOF) or unprotected transient overpower, damage can propagate from subassembly to subassembly and produce a whole-core–scale molten pool. Because the core is not in its most reactive configuration, a massive collapse of the molten material could result in a rapid supercritical condition with release of a large amount of energy. However, timely and sufficient fuel relocation outside the core by dedicated means could prevent any risk of recriticality and accident escalation. Based on a reference 1500-MW(electric) sodium-cooled fast reactor design, this paper describes the main results obtained in evaluating the recriticality potential of the European Sodium Fast Reactor (ESFR) core and conditions for its elimination during a ULOF-type transient. This study has been carried out in the frame of the Collaborative Project on European Sodium Fast Reactor of the 7th Framework Programme Euratom. The numerical analyses carried out in the present work allow one to estimate the amount of fuel mass that has to be removed from the core in order to maintain it in subcritical conditions, preventing the formation of a critical pool. Requirements for successful application of this approach, in terms of the negative reactivity insertion rate by fuel relocation and timing of discharge from the core, are derived.