ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Paul W. Humrickhouse, Paul P. H. Wilson
Nuclear Technology | Volume 155 | Number 2 | August 2006 | Pages 166-175
Technical Paper | Fission Reactors | doi.org/10.13182/NT06-A3754
Articles are hosted by Taylor and Francis Online.
A model of the University of Wisconsin Nuclear Reactor has been developed using MCNP5. Benchmarking of the model has centered on available reactor operations data from the original loading of the current TRIGA Fuel Life Improvement Program core, including control element differential worth curves and axial flux maps. By simulating the experimental measurement procedure for control element worth, integral worth values obtained for three control blades are within 6% of measured values. The comparison of simulated and measured axial thermal flux profiles suggests the need to improve the definition of the core temperatures and detailed isotopics. Future plans include modeling full-power (1 MW), high-temperature operation and burnup calculations to obtain current fuel definitions.