ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
M. Hélie, Cl. Desgranges, St. Perrin
Nuclear Technology | Volume 155 | Number 2 | August 2006 | Pages 120-132
Technical Paper | Materials | doi.org/10.13182/NT06-A3751
Articles are hosted by Taylor and Francis Online.
In the framework of a law voted in 1991, it has been decided that the management of French high-level nuclear waste (HLW) should be studied along three main lines: (a) transmutation of actinides in fast breeder reactors, (b) long-term interim storage of waste containers (whether containing vitrified waste or spent fuel elements canisters) for a maximum period of 300 yr, and (c) geological disposal of the containers after the interim storage period.The last two lines of research, among other problems, bring up the question of the long-term corrosion behavior of the containers. The Commissariat à l'Énergie Atomique (CEA) is in charge of the researches concerning the transmutation of the actinides and the long-term interim storage.As interim storage is concerned, extended studies are being carried out at the CEA in order to predict the environmental conditions of an interim storage facility and the consequent corrosion of the HLW containers over a period of 300 yr.A dry corrosion phase of a minimum duration of 100 yr was identified, followed by an atmospheric corrosion phase of a maximum duration of 200 yr. Phenomenological models were developed to obtain an estimate of the total corrosion damage during interim storage.Results led to a conservative estimate of a corroded thickness of metal comprised between 0.35 and 1 mm, hence, <2% of the wall thickness of the overpacks.Because of the extended period of time considered, this estimate, partly based on the extrapolation of experimental results, has to be reinforced. Mechanistic modeling of the elementary processes is currently in progress and has already given encouraging results for both the dry and atmospheric corrosion phases.