ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
P. Kar, G. Danko, J. S. Armijo, M. Misra, D. Bahrami
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 90-104
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3748
Articles are hosted by Taylor and Francis Online.
Thermal analysis of an alternative boiling water reactor (BWR) waste package design for permanent disposal in the Yucca Mountain Repository is reported in this paper. The new design implements an increase in the holding capacity of the BWR waste packages from 44 to 52 assemblies and a modified arrangement sequence of waste packages in the emplacement drift. The design is favorable from the perspective of a generally drier emplacement drift due to an increase in heat load in the waste packages and the resulting higher temperatures. The analysis addresses heat transfer issues inside the waste package and those pertinent to satisfying the safe thermal limits for the waste package components. Key parameters in the analysis are the spent nuclear fuel assembly effective conductivities, the number of aluminum shunts, and the gap backfill with pressurized helium inside the waste packages. The feasibility of the proposed design is demonstrated by the internal waste package thermal model and the thermal-hydrologic environment in the emplacement drift. The conformity of the alternative thermal design to safe temperatures, in spite of the additional heat load, led to another innovative design with radial arrangement of assemblies in the waste packages that would further support the sustenance of drier emplacement drifts. These radial configurations are also discussed in this paper.