ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
T. A. Taiwo, E. A. Hoffman, R. N. Hill, W. S. Yang
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 55-66
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3745
Articles are hosted by Taylor and Francis Online.
Transuranics (TRU) breakeven and burner core designs have been studied for the Pebble-Bed Gas-Cooled Fast Reactor (PB-GCFR), which was developed under a 2-yr U.S. Department of Energy Nuclear Energy Research Initiative project. The issues of minimizing waste production, fuel cost, and burnup reactivity swing, and maximizing TRU burning have been investigated primarily from a neutronics viewpoint. For TRU breakeven cores, it was found that for the given core power [300 MW(thermal)] and power density (50 MW/m3), the lowest amount of radiotoxic TRU to be processed is obtained for a long-life (single-batch) core of 30-yr duration. Minimizing the TRU processed results in a minimization of the TRU losses that ultimately will have to be entombed in a geologic repository.The results show that the single-batch, long-life PB-GCFR could be designed to operate over a wide range of cycle lengths and fuel loadings. By modifying the TRU feed to have a higher minor actinide (MA) fraction than contained in light water reactor spent fuel, the burnup reactivity swing for the long-life core can be reduced significantly. With this approach, it is also possible to configure the long-life PB-GCFR core as a TRU burner using nonuranium fuel. A nonuranium fuel PB-GCFR with 24% plutonium and 76% MAs can operate for 17 full-power years and achieve 25% burnup with a reactivity swing of 3%k.