ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
T. A. Taiwo, E. A. Hoffman, R. N. Hill, W. S. Yang
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 55-66
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3745
Articles are hosted by Taylor and Francis Online.
Transuranics (TRU) breakeven and burner core designs have been studied for the Pebble-Bed Gas-Cooled Fast Reactor (PB-GCFR), which was developed under a 2-yr U.S. Department of Energy Nuclear Energy Research Initiative project. The issues of minimizing waste production, fuel cost, and burnup reactivity swing, and maximizing TRU burning have been investigated primarily from a neutronics viewpoint. For TRU breakeven cores, it was found that for the given core power [300 MW(thermal)] and power density (50 MW/m3), the lowest amount of radiotoxic TRU to be processed is obtained for a long-life (single-batch) core of 30-yr duration. Minimizing the TRU processed results in a minimization of the TRU losses that ultimately will have to be entombed in a geologic repository.The results show that the single-batch, long-life PB-GCFR could be designed to operate over a wide range of cycle lengths and fuel loadings. By modifying the TRU feed to have a higher minor actinide (MA) fraction than contained in light water reactor spent fuel, the burnup reactivity swing for the long-life core can be reduced significantly. With this approach, it is also possible to configure the long-life PB-GCFR core as a TRU burner using nonuranium fuel. A nonuranium fuel PB-GCFR with 24% plutonium and 76% MAs can operate for 17 full-power years and achieve 25% burnup with a reactivity swing of 3%k.