ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Bilge Yildiz, Katherine J. Hohnholt, Mujid S. Kazimi
Nuclear Technology | Volume 155 | Number 1 | July 2006 | Pages 1-21
Technical Paper | Fission Reactors | doi.org/10.13182/NT06-A3742
Articles are hosted by Taylor and Francis Online.
Hydrogen production using high-temperature steam electrolysis (HTSE) supported by a supercritical CO2 (SCO2) recompression Brayton cycle that is directly coupled to an advanced gas-cooled reactor (AGR) is proposed in this paper. The system features and efficiency are analyzed in a parametric fashion. The analysis includes the influence of the major components' performance and the component integration in a proposed plant layout. The configuration, HTSE-SCO2-AGR, with thermal recuperation from the product gas streams and an intermediate heat exchanger between the turbine exit and the feedwater stream is found to offer excellent thermal efficiency, operational flexibility, and expected cost. The HTSE average process temperature is 900°C, and the hydrogen pipeline delivery pressure is assumed to be 7 MPa for the evaluation of the plant performance. The reactor exit temperature and the SCO2 cycle turbine inlet temperature are the same as those for the SCO2 recompression cycle design: 550 to 700°C. The 900°C at the HTSE unit, which is higher than the reactor exit temperature, is achieved with recuperative and electrical heating. HTSE is assumed to operate within 80 to 90% voltage efficiency at 1 atm to 7 MPa of pressure. A parametric analysis of these operating conditions shows that the system can achieve 38.6 to 48.2% low heating value of net hydrogen production energy efficiency. The extensive experience from commercial AGRs, the compactness of the SCO2 power conversion system, and the progress in the electrolysis cell materials field can help the economical development of a future recuperative HTSE-SCO2-AGR. The major research and development needs for this plant concept are materials processing for the durability and efficiency of the HTSE system, the design update of the AGR with advanced materials to resist high-pressure CO2 coolant, thermal hydraulics of CO2 at supercritical pressures, and detailed component design for system integration.