ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Daisuke Kawasaki, Joonhong Ahn, Chang-Lak Kim, Jin-Beak Park
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 374-388
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3741
Articles are hosted by Taylor and Francis Online.
The release of radionuclides from the conceptual low- and intermediate-level radioactive waste (LILW) repository in Korea is analyzed by establishing a multicompartment model. The model takes into account the vault-array configuration consisting of multiple waste types, multimember radioactive decay chains, and radionuclide transport through the water-unsaturated regions and water-saturated aquifer. Observations of the repository performance have been made with the radiological exposure dose rates and with the radiotoxicities in the environment.Numerical results show that, among all the radionuclides in the waste, 129I is the predominant contributor to the overall peak exposure dose rate. The peak exposure dose rate of 129I can be affected by a migration distance in the geosphere and the vault-array configuration. Reducing the initial inventory of 129I stored in the waste vaults or spreading its release over a longer time period by modification of the engineered barrier system would effectively reduce the exposure dose rate because the release rate of 129I from the repository is reduced.The total radiotoxicity in the environment is dominated by 129I at early times and by 238U and its daughters after 106 yr. Because of the long half-lives of these nuclides, the radiotoxicity in the environment is insensitive to the vault-array configuration or to the transport distance in the geosphere.