ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Akio Yamamoto, Masayuki Toujou, Kentarou Komori, Yasunori Kitamura, Yoshihiro Yamane
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 318-327
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3736
Articles are hosted by Taylor and Francis Online.
In this paper, new optimization algorithms for the in-core fuel shuffling sequence of a boiling water reactor (BWR) are proposed to reduce outage time. During the short outage of a BWR, fuel shuffling can be a critical path in the periodic overall plant inspection. Therefore, a reduction in operation time for in-core fuel shuffling is essential to improve the plant capacity factor. For BWR in-core fuel shuffling, the shuffling sequence should be selected carefully since a fuel shuffling operation may affect those following it. Furthermore, several constraints must be satisfied during the in-core fuel shuffling of a BWR; e.g., two fuel assemblies must be inserted diagonally in a cell to fix the position of a control blade in it. Therefore, it is difficult to optimize BWR in-core fuel shuffling. In order to resolve this issue, new optimization methods are proposed, and the performances of some optimization algorithms are compared. Test calculations in actual BWR plants reveal that the workload for in-core fuel shuffling can be reduced by the proposed methods. The results of this paper will contribute to increasing the plant capacity factor by reducing the outage time.