ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Akio Yamamoto, Masayuki Toujou, Kentarou Komori, Yasunori Kitamura, Yoshihiro Yamane
Nuclear Technology | Volume 154 | Number 3 | June 2006 | Pages 318-327
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT06-A3736
Articles are hosted by Taylor and Francis Online.
In this paper, new optimization algorithms for the in-core fuel shuffling sequence of a boiling water reactor (BWR) are proposed to reduce outage time. During the short outage of a BWR, fuel shuffling can be a critical path in the periodic overall plant inspection. Therefore, a reduction in operation time for in-core fuel shuffling is essential to improve the plant capacity factor. For BWR in-core fuel shuffling, the shuffling sequence should be selected carefully since a fuel shuffling operation may affect those following it. Furthermore, several constraints must be satisfied during the in-core fuel shuffling of a BWR; e.g., two fuel assemblies must be inserted diagonally in a cell to fix the position of a control blade in it. Therefore, it is difficult to optimize BWR in-core fuel shuffling. In order to resolve this issue, new optimization methods are proposed, and the performances of some optimization algorithms are compared. Test calculations in actual BWR plants reveal that the workload for in-core fuel shuffling can be reduced by the proposed methods. The results of this paper will contribute to increasing the plant capacity factor by reducing the outage time.