ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Lawrence N. Oji, Keisha B. Martin, Mary E. Stallings, Martine C. Duff
Nuclear Technology | Volume 154 | Number 2 | May 2006 | Pages 237-246
Technical Paper | Reprocessing | doi.org/10.13182/NT06-A3731
Articles are hosted by Taylor and Francis Online.
The laboratory conditions used to synthesize the uranyl silicate minerals are almost identical to the evaporator conditions under which high caustic nuclear wastes are processed to reduce total liquid waste volume. The only significant difference is in the sodium ion concentration in such caustic nuclear wastes, which typically averages ~5.6 M Na+. The goal of this study was to experimentally determine whether uranium silicate minerals can be produced under nuclear waste evaporator conditions. If the formation of these uranium minerals is possible, it may not only lead to the clogging of the evaporators but also result in the accumulation of fissile 235U and thus present a criticality problem.In this investigation, synthetic uranyl silicate minerals (sodium weeksite, sodium boltwoodite, and uranophane) were produced only under low Na+ concentration (<0.02 M), while attempts to synthesize these same uranyl silicate minerals in the presence of high Na+ concentration (high ionic strength reacting media), which is typical of caustic nuclear waste evaporator processing conditions, proved unfruitful. In the presence of high Na+ concentration, the main product for the same soluble silica-uranium reaction mixture shifts toward the formation of mainly clarkeite (Na[(UO2)O(OH)](H2O)0-1), a hydrated sodium uranate, and not toward the formation of uranyl silicates.Thus, the presence of high Na+ concentration in the reaction mixture of dissolved uranium and silica inhibits or suppresses the formation of crystalline uranyl silicates. The conclusion is therefore made that evaporator fouling by uranyl silicate minerals is not easily attained under nuclear waste processing conditions because of the high Na+ concentration in the liquid wastes.