ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Lawrence N. Oji, Keisha B. Martin, Mary E. Stallings, Martine C. Duff
Nuclear Technology | Volume 154 | Number 2 | May 2006 | Pages 237-246
Technical Paper | Reprocessing | doi.org/10.13182/NT06-A3731
Articles are hosted by Taylor and Francis Online.
The laboratory conditions used to synthesize the uranyl silicate minerals are almost identical to the evaporator conditions under which high caustic nuclear wastes are processed to reduce total liquid waste volume. The only significant difference is in the sodium ion concentration in such caustic nuclear wastes, which typically averages ~5.6 M Na+. The goal of this study was to experimentally determine whether uranium silicate minerals can be produced under nuclear waste evaporator conditions. If the formation of these uranium minerals is possible, it may not only lead to the clogging of the evaporators but also result in the accumulation of fissile 235U and thus present a criticality problem.In this investigation, synthetic uranyl silicate minerals (sodium weeksite, sodium boltwoodite, and uranophane) were produced only under low Na+ concentration (<0.02 M), while attempts to synthesize these same uranyl silicate minerals in the presence of high Na+ concentration (high ionic strength reacting media), which is typical of caustic nuclear waste evaporator processing conditions, proved unfruitful. In the presence of high Na+ concentration, the main product for the same soluble silica-uranium reaction mixture shifts toward the formation of mainly clarkeite (Na[(UO2)O(OH)](H2O)0-1), a hydrated sodium uranate, and not toward the formation of uranyl silicates.Thus, the presence of high Na+ concentration in the reaction mixture of dissolved uranium and silica inhibits or suppresses the formation of crystalline uranyl silicates. The conclusion is therefore made that evaporator fouling by uranyl silicate minerals is not easily attained under nuclear waste processing conditions because of the high Na+ concentration in the liquid wastes.