ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Marzio Marseguerra, Enrico Zio, Fabio Marcucci
Nuclear Technology | Volume 154 | Number 2 | May 2006 | Pages 224-236
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3730
Articles are hosted by Taylor and Francis Online.
The control and operation of complex power-generating systems, such as nuclear power plants, rely on the measurements of several sensors that monitor the process and the system state. On the basis of the sensor measurements, the system is operated for maximum economic efficiency and safety. Out-of-calibration sensors can lead to misinterpretation of the system state and problems with control and operation of the process, with possible economic losses, equipment damage, and safety consequences. To avoid such occurrences, periodic sensor calibrations are scheduled to ensure that sensors are operating correctly. These calibrations are performed manually and involve all sensors, independent of the actual need for calibration of each sensor. Continuous sensor calibration monitoring would then be most desirable both to ensure correct process control and system operation and to reduce maintenance costs associated with performing unnecessary manual sensor calibrations. This latter issue is of great relevance in nuclear power plants due to the large number of sensors employed, which are tested for calibration at each refueling outage. In this paper, the artificial neural network-based sensor calibration monitoring system is proposed to provide continuous sensor status information and virtual estimates for faulty sensors. In particular, we illustrate the design of an autoassociative artificial neural network for sensor fault detection and validation. The efficiency of the proposed method is verified through its application to eight critical transient signals coming from a U-tube steam generator of a pressurized water reactor modeled by means of a validated simulation code.