ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
T. H. Trumbull, D. R. Harris
Nuclear Technology | Volume 154 | Number 1 | April 2006 | Pages 117-127
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT06-A3722
Articles are hosted by Taylor and Francis Online.
Measurements of delayed fission product gamma-ray transmission through low-enriched UO2 fuel pin lattices in an air medium were conducted at the Rensselaer Polytechnic Institute Reactor Critical Facility (RCF). The RCF core consists of excess Special Power Excursion Reactor Test fuel pins enriched to 4.81 wt% 235U and clad in stainless steel. An experimental apparatus was constructed to hold various arrangements of fuel pin lattices. The arrangements consisted of a single activated source pin taken from the reactor core surrounded by inactive fuel pins in an air medium. A sodium-iodide detector and gamma-ray spectroscopy system was used to generate a pulse-height spectrum of the gamma-ray radiation for detector positions outside the lattice. The change in radiation intensity as the detector is rotated about the vertical axis of the lattice, the "channeling effect," was measured. Measurements of the channeling effect were performed for six experimental arrangements: 3 × 3, 5 × 5, and 7 × 7 lattices, with both the corner and the center positions containing the activated pin. The results of the measurements demonstrate that the gamma-ray radiation intensity can vary widely as a function of angle relative to the angle of rotation about the vertical axis of the lattice.