ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Rajeev Ranjan, R. K. Singh, S. K. Sikka, Anil Kakodkar
Nuclear Technology | Volume 153 | Number 3 | March 2006 | Pages 341-359
Technical Paper | Reactor Safety | doi.org/10.13182/NT06-A3712
Articles are hosted by Taylor and Francis Online.
This paper highlights a three-dimensional (3-D) transient numerical simulation of the Baneberry event of December 18, 1970, with a 10-kT yield and a 278-m source depth, conducted at the Nevada Test Site. This site has complex geological features with preexisting faults and layered geological strata characterized by a hard Paleozoic layer below the source, and saturated tuff on the west side of the source and clay-rich tuff toward the east side, both overlaid by top alluvial layers. In addition, a layer of 50% montmorillonite is sandwiched between two layers of 20% montmorillonite on the east end. This event is reported to have vented because of fault rupture and shock-wave reflections from a closer hard Paleozoic layer near the source. Here, the shock-induced slip along the preexisting fault plane has an important bearing on the containment efficiency of this event. None of the earlier reported simulation studies address the above slip phenomenon and the influence of variation in geological strata in the presence of the preexisting fault in a 3-D framework for underground nuclear events. The paper describes the capabilities of the SHOCK-3D finite element code for simulating short-time shock-wave propagation, fault rupture leading to sliding along the fault plane, and subsequent crater formation at ground zero with a long-duration transient computation to study the quasi-static behavior of the Baneberry event. Precise modeling schemes of the composite geological strata and fault system demonstrate that a dip-slip mechanism had developed for this event, leading to final venting. The present numerical computation results with SHOCK-3D are in excellent agreement with site observations. In addition, the limitations of earlier reported simulation results from the TENSOR two-dimensional axisymmetric code presented by Terhune et al. have also been overcome.