ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Prepare for the 2025 PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall. Now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Miltiadis Alamaniotis, Sangkyu Lee, Tatjana Jevremovic
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 41-57
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-75
Articles are hosted by Taylor and Francis Online.
Radioisotope identification from low-count-rate spectra or spectra obtained through low-resolution detectors constitutes a challenging environment for accurate spectral analysis. The use of intelligent processing algorithms is a significant step in analyzing spectra, conceivably increasing the accuracy of the nuclide identification in such scenarios. This paper introduces an intelligent methodology for automated processing of low-count gamma-ray spectra acquired with a scintillation detector aimed at identifying radioisotope patterns, and it evaluates the performance of this methodology against a set of experimentally acquired gamma-ray spectra. The novel methodology adopts tools from the “artificial intelligence library” to preprocess the spectrum and subsequently identify radioisotopes. In particular, in the preprocessing step, the measured spectrum is divided into equally long energy intervals, whose values are replaced with those computed by a support vector regressor equipped with a linear kernel function. In the next step, the fuzzy logic–based identifier matches spectral peaks with entries in the spectral library, aiming at identifying isotopic signatures in the spectrum. The proposed intelligent methodology is benchmarked against the multiple-linear-regression (MLR) spectrum-fitting algorithm. Assessment results demonstrate the effectiveness of the proposed methodology in identifying isotopes compared with the MLR algorithm by significantly reducing the number of false detections and improving correct detection performance. Furthermore, the proposed methodology exhibits an overall higher detection sensitivity (by 13.3%) and precision (by 46.8%) than those obtained with MLR.