ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Miltiadis Alamaniotis, Sangkyu Lee, Tatjana Jevremovic
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 41-57
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT14-75
Articles are hosted by Taylor and Francis Online.
Radioisotope identification from low-count-rate spectra or spectra obtained through low-resolution detectors constitutes a challenging environment for accurate spectral analysis. The use of intelligent processing algorithms is a significant step in analyzing spectra, conceivably increasing the accuracy of the nuclide identification in such scenarios. This paper introduces an intelligent methodology for automated processing of low-count gamma-ray spectra acquired with a scintillation detector aimed at identifying radioisotope patterns, and it evaluates the performance of this methodology against a set of experimentally acquired gamma-ray spectra. The novel methodology adopts tools from the “artificial intelligence library” to preprocess the spectrum and subsequently identify radioisotopes. In particular, in the preprocessing step, the measured spectrum is divided into equally long energy intervals, whose values are replaced with those computed by a support vector regressor equipped with a linear kernel function. In the next step, the fuzzy logic–based identifier matches spectral peaks with entries in the spectral library, aiming at identifying isotopic signatures in the spectrum. The proposed intelligent methodology is benchmarked against the multiple-linear-regression (MLR) spectrum-fitting algorithm. Assessment results demonstrate the effectiveness of the proposed methodology in identifying isotopes compared with the MLR algorithm by significantly reducing the number of false detections and improving correct detection performance. Furthermore, the proposed methodology exhibits an overall higher detection sensitivity (by 13.3%) and precision (by 46.8%) than those obtained with MLR.