ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Fermi America looks to go public as NRC accepts COLA for AP1000s
Texas Tech University and Fermi America are now one step closer to realizing their massive vision for the Advanced Energy and Intelligence Campus in Amarillo, Texas, as the Nuclear Regulatory Commission has accepted the first two parts of its combined license application (COLA) for four Westinghouse AP1000s.
Bei Ye, Jeff Rest, Yeon Soo Kim, Gerard Hofman, Benoit Dionne
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 27-40
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-56
Articles are hosted by Taylor and Francis Online.
DART (Dispersion Analysis Research Tool) is a computational code developed for integrated simulation of the irradiation behavior of aluminum dispersion fuels used in research reactors. The DART computational code uses a mechanistic fission gas behavior model and a set of up-to-date empirical correlations to simulate the fuel morphology change as a function of burnup. Integrating a thermal calculation subroutine enables fuel material properties to be updated at each time step. This paper describes the primary physical models that form the basis of the DART computational code. A baseline validation was performed through the modeling of several U-Mo/Al mini-plate tests (RERTR-6, 7, and 9) in the Advanced Test Reactor (ATR). A demonstration problem is also presented through the calculation of fuel plate swelling and constituent volume fractions in full-sized plates from the AFIP-1 test in ATR.