ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Ke Zhao, Belle R. Upadhyaya, Richard T. Wood
Nuclear Technology | Volume 153 | Number 3 | March 2006 | Pages 326-340
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT06-A3711
Articles are hosted by Taylor and Francis Online.
A design approach to sensor fault detection and isolation (FDI) of helical coil steam generator (HCSG) systems of the International Reactor Innovation Secure (IRIS) reactor is presented. In the design phase, a physical model is first developed to provide a realistic simulation and generate data characterizing the system dynamics. A subspace identification technique is then used to extract a low-order linear state-space model from the data. Finally, a robust dynamic parity space approach is utilized to design residual generators for FDI. This design approach is able to achieve fault isolation following a predetermined logic without the need to use data during fault conditions, which is an unrealistic assumption of many FDI approaches studied for nuclear power plants. The results of the HCSG application show that the approach is robust to not only measurement and process noises but also operation condition changes and has the capability of correct FDI during reactor power transients and during the propagation of sensor faults in a control loop.