ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Paul K. Chan, Stephane Paquette, Hugues W. Bonin
Nuclear Technology | Volume 191 | Number 1 | July 2015 | Pages 1-14
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-67
Articles are hosted by Taylor and Francis Online.
A CANDU lattice cell has been modeled using the Los Alamos National Laboratory's MCNP 6 code and Atomic Energy of Canada Limited's WIMS-AECL 3.1. Models for the CANDU 37-element fuel bundle have included a CANLUB coating, as a carrier for the neutron absorbers. The objective is to improve CANDU reactor operating margins by adding small amounts (∼1 g) of neutron absorbers to each fuel element.
For CANDU natural uranium fuel bundle design, the results indicate that (a) the fueling transient (due to the xenon-free effect) could be significantly reduced using gadolinium oxide (Gd2O3), with no significant impact on fuel burnup, and (b) the reactivity peak (due to plutonium production) could be reduced using europium oxide (Eu2O3), with minimal impact on fuel burnup. An appropriate mixture of Gd2O3 and Eu2O3 that will improve operation and safety margins while having a minimal impact on fuel burnup is determined.
Reactivity and power calculations for various mixtures of Gd2O3 and Eu2O3 are reported here. It is concluded that ∼180 mg Gd2O3 and ∼1000 mg Eu2O3 (∼4.9 ×10−3 wt% per bundle) are sufficient to suppress the refueling transient and lower the axial plutonium peak, with a 0.27% burnup penalty (which is a small impact).
Fuel safety and performance are always important topics for a nuclear utility. This approach of a relatively simple application of burnable poisons to existing CANDU natural uranium fuel design offers the benefits of improving fuel utilization and safety margins.