ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Aaron M. Thomas, Jun Fang, Jinyong Feng, Igor A. Bolotnov
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 274-291
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-72
Articles are hosted by Taylor and Francis Online.
The goal of the present study is to demonstrate that direct numerical simulations (DNS) coupled with interface tracking methods can be used to estimate interfacial forces in two-phase flows. Current computational multiphase fluid dynamics codes model interfacial forces utilizing closure laws that are heavily dependent on limited experimental data and simplified analytical approximations. In the present work, a method for improving the current interfacial force database has been developed by using DNS to quantify the lift and drag forces on a single bubble in laminar and turbulent shear flows. A proportional-integral-derivative–based controller was implemented into the finite element–based, multiphase flow solver [PHASTA (Parallel, Hierarchic, higher-order accurate, Adaptive, Stabilized, finite element method Transient Analysis)] to control the bubble position. This capability allowed for utilization of a steady-state force balance on the bubble to determine lift and drag coefficients in various shear flows. Specifically, for low shear flows (2.0 s−1), the effect of the wall presence is analyzed, and for high shear flows, the effect of turbulence is studied. A number of uniform shear (10.0 to 470.0 s−1) laminar flows were simulated to assess lift and drag force behavior as the kinetic energy of the flow increased. Two high shear (236.0 and 470.0 s−1) turbulent flows were simulated to understand bubble-turbulence interaction influence on the drag and lift phenomena. Two uniform shear rates (20.0 and 100 s−1) were simulated utilizing pressurized water reactor fluid properties. The lift and drag coefficients estimated in this work are in agreement with models developed for low shear laminar flows, whereas for high shear laminar and turbulent flows, bubble-turbulence interaction became a dominating influence in the lift and drag coefficient estimation. The novel results and method presented in this paper offer a path to simulating full-fledged reactor coolant environments where the lift and drag forces on a single bubble can be studied.