ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Aaron M. Thomas, Jun Fang, Jinyong Feng, Igor A. Bolotnov
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 274-291
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-72
Articles are hosted by Taylor and Francis Online.
The goal of the present study is to demonstrate that direct numerical simulations (DNS) coupled with interface tracking methods can be used to estimate interfacial forces in two-phase flows. Current computational multiphase fluid dynamics codes model interfacial forces utilizing closure laws that are heavily dependent on limited experimental data and simplified analytical approximations. In the present work, a method for improving the current interfacial force database has been developed by using DNS to quantify the lift and drag forces on a single bubble in laminar and turbulent shear flows. A proportional-integral-derivative–based controller was implemented into the finite element–based, multiphase flow solver [PHASTA (Parallel, Hierarchic, higher-order accurate, Adaptive, Stabilized, finite element method Transient Analysis)] to control the bubble position. This capability allowed for utilization of a steady-state force balance on the bubble to determine lift and drag coefficients in various shear flows. Specifically, for low shear flows (2.0 s−1), the effect of the wall presence is analyzed, and for high shear flows, the effect of turbulence is studied. A number of uniform shear (10.0 to 470.0 s−1) laminar flows were simulated to assess lift and drag force behavior as the kinetic energy of the flow increased. Two high shear (236.0 and 470.0 s−1) turbulent flows were simulated to understand bubble-turbulence interaction influence on the drag and lift phenomena. Two uniform shear rates (20.0 and 100 s−1) were simulated utilizing pressurized water reactor fluid properties. The lift and drag coefficients estimated in this work are in agreement with models developed for low shear laminar flows, whereas for high shear laminar and turbulent flows, bubble-turbulence interaction became a dominating influence in the lift and drag coefficient estimation. The novel results and method presented in this paper offer a path to simulating full-fledged reactor coolant environments where the lift and drag forces on a single bubble can be studied.