ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
S. Pillon, F. Sudreau, G. Gaillard-Groléas
Nuclear Technology | Volume 153 | Number 3 | March 2006 | Pages 264-273
Technical Paper | Sodium Technology - Radioactive Waste Management and Disposal | doi.org/10.13182/NT06-A3706
Articles are hosted by Taylor and Francis Online.
Studies focusing on different long-lived radioactive waste transmutation scenarios illustrate the relevance of fast breeder reactors (FBRs) vis-à-vis the incineration of minor actinides (MAs) and certain long-lived fission products.This research program evaluates fuels and targets for transmutation, relying mainly on irradiation data from Phénix to experimentally validate and demonstrate the technical feasibility of the envisaged concepts.As regards the homogeneous transmutation of MAs in fast reactors, Phénix clearly demonstrates the good behavior of MA-bearing oxide fuel, at least up to 6.4 at.% of burnup. Similar results on metallic MA-bearing fuels as well as technetium targets will be available very soon. Important knowledge on innovative composite fuels developed for the transmutation of MAs in fast reactors or in accelerator-driven reactors (accelerator-driven systems) is also gained. Inert matrices resistant to neutron and fission product damage have been selected. The role of the microstructure and irradiation conditions on the composite behavior under irradiation is explained.This program also highlights the possibilities of designing and fabricating transmutation targets, obtaining authorization to irradiate these targets in a power reactor - a series of stages to be accomplished in order to demonstrate the technical feasibility of incinerating MAs and technetium in FBRs.