ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
L. Mohanta, M. P. Riley, F. B. Cheung, S. M. Bajorek, J. M. Kelly, K. Tien, C. L. Hoxie
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 301-312
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-77
Articles are hosted by Taylor and Francis Online.
Heat transfer results for subcooled and saturated inverted annular film boiling (IAFB) obtained from a 7×7 rod bundle during transient reflood are presented in this paper. The test section consists of heater rods of 9.5-mm diameter and 12.6-mm pitch arranged in a square array. Flooding rates considered are 0.076 and 0.152 m/s, pressure varied from 138 to 414 kPa, and inlet subcooling up to 83 K. Evaluation of the data includes estimation of the local void fraction and Nusselt number during IAFB as well as in the inverted slug film boiling (ISFB) regime, which occurs when the inverted annular liquid column disintegrates. Experimental heat transfer results are compared with several film boiling models, and a new correlation for the Nusselt number is proposed for the IAFB and ISFB regimes. Predicted Nusselt numbers using the new correlation deviate from the experimental data by an average error of 15% and root-mean-square error of ∼30%.