ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Ted Worosz, Seungjin Kim, Chris Hoxie
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 264-273
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-71
Articles are hosted by Taylor and Francis Online.
In the two-group interfacial area transport equation (IATE) used to calculate the interfacial area concentration (ai), bubbles are categorized into two groups. Namely, group-I consists of spherical/distorted bubbles, and group-II consists of cap/slug/churn-turbulent bubbles. Robust models for the major bubble interaction mechanisms that cause the transition from purely one-group to two-group flows are essential to the dynamic closure of the two-fluid model with the two-group IATE. Therefore, the present study seeks to establish an experimental database in cap-bubbly flows that highlights this transition to support model development. A four-sensor conductivity probe is used to obtain measurements of local time-averaged two-phase flow parameters, including the void fraction and ai, in vertical-upward air-water two-phase flows in a 5.08-cm pipe. Four flow conditions are investigated at 〈jf〉 = 2 m/s with increasing 〈jg〉 to study the generation and growth of group-II bubbles. Characteristic features of the local void fraction and ai distributions are discussed. Additionally, axial development of area-averaged void fraction and ai that is indicative of exchange between the bubble groups is presented.