ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Ted Worosz, Seungjin Kim, Chris Hoxie
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 264-273
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-71
Articles are hosted by Taylor and Francis Online.
In the two-group interfacial area transport equation (IATE) used to calculate the interfacial area concentration (ai), bubbles are categorized into two groups. Namely, group-I consists of spherical/distorted bubbles, and group-II consists of cap/slug/churn-turbulent bubbles. Robust models for the major bubble interaction mechanisms that cause the transition from purely one-group to two-group flows are essential to the dynamic closure of the two-fluid model with the two-group IATE. Therefore, the present study seeks to establish an experimental database in cap-bubbly flows that highlights this transition to support model development. A four-sensor conductivity probe is used to obtain measurements of local time-averaged two-phase flow parameters, including the void fraction and ai, in vertical-upward air-water two-phase flows in a 5.08-cm pipe. Four flow conditions are investigated at 〈jf〉 = 2 m/s with increasing 〈jg〉 to study the generation and growth of group-II bubbles. Characteristic features of the local void fraction and ai distributions are discussed. Additionally, axial development of area-averaged void fraction and ai that is indicative of exchange between the bubble groups is presented.