ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Joshua Wheeler, Ted Worosz, Seungjin Kim
Nuclear Technology | Volume 190 | Number 3 | June 2015 | Pages 215-224
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-69
Articles are hosted by Taylor and Francis Online.
Understanding the effects of spacer grids on the coolant flow through a nuclear reactor core is required for best-estimate design and analysis of the plant. The impact of a spacer grid on two-phase flows is of particular importance because the geometric effects of the grid can alter the two-phase flow structure and, consequently, the mass, momentum, and energy transfer characteristics. Therefore, a scaled separate-effects test facility is constructed to investigate the effects of a spacer grid on the hydrodynamics of air-water two-phase flow through a rod bundle. The test facility is scaled to maintain hydrodynamic and geometric similarity to single- and two-phase flows in a conventional pressurized water reactor and to facilitate detailed local measurements of two-phase flow parameters around the simulant fuel rods with a four-sensor conductivity probe. This paper presents measurements of local time-averaged two-phase flow parameters acquired upstream and downstream of the spacer grid with the conductivity probe in a representative subchannel of a 1×3 rod bundle for eight flow conditions. Characteristic features of the development of the two-phase flow parameters along the test section are discussed.