ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Jorge Navarro, Terry A. Ring, David W. Nigg
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 183-192
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-4
Articles are hosted by Taylor and Francis Online.
A deconvolution methodology aimed to reduce the uncertainty for nondestructively predicting fuel burnup using gamma spectra collected with LaBr3 scintillators was developed. Deconvolution techniques have been used in the past to improve photopeak resolution of data collected using gamma detectors; however, they have not been used as a tool to more accurately predict fuel burnup. The deconvolution methodology consisted of calculating the detector response function using Monte Carlo simulations, validating the detector response function against experimental data, and implementing the maximum likelihood expectation maximization algorithm to enhance the LaBr3 gamma spectra. The deconvolution methodology was first tested on single-isotopic simulated data; later it was applied to fuel simulated data that were based on Advanced Test Reactor (ATR) fuel gamma spectra. The study showed that LaBr3 gamma spectra photopeak resolution and quality can be improved significantly using deconvolution methods, in addition to proving that enhancement techniques can be used to nondestructively predict ATR fuel burnup more accurately than using LaBr3 data without enhancements.