ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How can we shape the global nuclear future?
Fiona Rayment
Shaping the global nuclear future requires an understanding of nuclear’s role in addressing national and energy security endeavors together with foresight into the energy sector’s future needs. Nuclear typically produces reliable baseload electricity, but it could also play an important role in economically viable cogeneration. In addition, future electricity demand will require significant enhancements to baseload generation. Addressing these challenges requires a combination of innovation, collaboration, capacity enhancements, and focused strategic investments.
Nuclear is increasingly recognized as essential to enabling energy security and achieving net-zero emissions. The United Kingdom has demonstrated leadership in this area, with initiatives such as the Young Generation Network’s global #NetZeroNeedsNuclear campaign at COP26 in Glasgow, Scotland. Efforts like these are impossible without international collaboration.
Ian Porter, Travis W. Knight, Patrick Raynaud
Nuclear Technology | Volume 190 | Number 2 | May 2015 | Pages 174-182
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-100
Articles are hosted by Taylor and Francis Online.
Nuclear reactor systems codes have the ability to model the system response in an accident scenario based on known initial conditions (ICs) at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermomechanical fuel rod response models needed for best-estimate prediction of fuel rod failure. Alternatively, the reverse can be said about fuel performance codes; they can lack the ability to capture and model the thermal-hydraulic (T-H) influence of adjacent fuel rods and the rod's location in the reactor core. This work analyzes the limitations in using fuel performance codes to represent in-reactor conditions as determined by full-core T-H codes. The codes used in this analysis are the U.S. Nuclear Regulatory Commission's steady-state fuel performance code FRAPCON-3.5 and T-H code TRACE-V5P3. In order to assess the impact of the limitations found in the codes, several modifications were made to all of the codes to improve code-to-code consistency. The modifications to the fuel performance code include adding the ability to model gamma-ray heating and providing realistic core coolant conditions. The T-H code modifications include adding the ability to model the fuel with axially varying burnup-dependent fuel and cladding dimensional changes and corrosion characteristics. The fuel in a Westinghouse four-loop pressurized water reactor was modeled to assess the impacts these modifications have on fuel performance and ICs for transient analysis. The results of this study show that current modeling assumptions (and limitations) can yield both conservative and nonconservative results on several important licensing criteria.