ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
O. S. Gokhale, B. P. Puranik, A. K. Ghosh
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 52-64
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT14-31
Articles are hosted by Taylor and Francis Online.
Heat transfer characteristics of intact fuel pins under reflood conditions have been extensively studied to understand the quench behavior of a typical pressurized water reactor (PWR). Overheating of fuel pins due to loss of nucleate boiling under exposed conditions causes the clad to balloon over large portions of the fuel pin length (up to 60%). The reflood behavior of ballooned fuel pins has been studied experimentally for ballooned heater pin configurations with an up to 15% ballooned length of the total length. Substantial changes in the reflood behavior are observed for a higher extent of the ballooned region. An experimental setup is thus being developed to study the effect of the large extent of the ballooned region (up to 60% of the total length) on the reflood behavior. The experimental setup employs a 5×5 matrix of indirectly heated fuel pins surrounded by 32 dummy fuel pins. The scaling analysis carried out for the design of the experimental setup is presented here. The nondimensional π terms pertaining to the quench phenomena have been conserved as compared to the typical PWR values. The evolution of some of the nondimensional π terms under reflood conditions has been discussed for simulations done with RELAP5 for ballooned as well as nonballooned test cases. Delayed quenching is observed in the extended ballooned fuel pins due to poor heat transfer in the ballooned region.