ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Hee-Jin Shim, Chang-Kyun Oh, Hyun-Su Kim, Myung-Hwan Boo, Jong-Jooh Kwon
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 88-96
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT13-150
Articles are hosted by Taylor and Francis Online.
Metal fatigue is a well-known phenomenon whereby material characteristics are deteriorated when even a small load is applied repeatedly. Therefore, an accurate fatigue evaluation is very important in terms of component integrity and reliability. In the design stage, the fatigue evaluation of nuclear class 1 components has to be performed in accordance with Sec. III of the ASME Boiler and Pressure Vessel Code. However, operating experience shows that the design transients are very conservative compared to the actual ones in terms of the heating/cooling rates and the number of transient occurrences. Considering that these two factors affect the thermal stress and thereafter the fatigue usage factor (FUF), the actual fatigue damage can differ from the design fatigue evaluation result. In order to evaluate and monitor the FUF exactly, therefore, various methods have been proposed and widely implemented. Among these, the cycle-based approach (CBA) utilizes the stresses for the design transients and reflects only the actual number of transient occurrences. For this reason, the CBA provides a conservative FUF, although it is very simple and easy to implement. Therefore, a simple and accurate fatigue monitoring method is still needed.
The purpose of this paper is to develop a new approach for effective fatigue damage monitoring. To do this, a thorough review is conducted for the design transients and actual transients for the Westinghouse-type pressurized water reactors in Korea. In addition, a wide range of finite element analyses are carried out varying the heating/cooling rates and the pattern of the transients. Based on this result, a new CBA is proposed incorporating the simple correction factors for both the heating/cooling rates and the transient patterns. A case study is also carried out for the reactor pressure vessel outlet nozzle to verify the validity and applicability of the proposed method. The result indicates that the proposed method can provide a realistic FUF, and more importantly, it is very easy to implement. From these, it is anticipated that the new approach can be widely used in practical fatigue monitoring of nuclear components and piping.