ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Joshua Kaizer
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 65-71
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-38
Articles are hosted by Taylor and Francis Online.
Empirical models are applicable over limited ranges of their predictor variables. The space defined by those ranges, the application domain, is the entire space over which the empirical model is applied. One important assumption is that the model’s predictive behavior is consistent over the entire application domain. This assumption is commonly made for critical heat flux (CHF) models when they are applied in reactor safety analysis. The intention of this work is to demonstrate that the current assessment methods used to justify this assumption may not always identify subregions in the application domain where the model’s predictive capability is degraded. This is accomplished by intentionally placing a nonconservative subregion in a CHF model and demonstrating that the current assessment methods are unable to identify that nonconservative subregion. As the existence of a nonconservative subregion may impact reactor safety analysis, a new method is proposed that does identify the nonconservative subregion. This new method is a multidimensional approach capable of demonstrating if the CHF model’s predictive behavior is likely due to random effects or is due to a degraded predictive capability in a given subregion.