ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Joshua Kaizer
Nuclear Technology | Volume 190 | Number 1 | April 2015 | Pages 65-71
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT14-38
Articles are hosted by Taylor and Francis Online.
Empirical models are applicable over limited ranges of their predictor variables. The space defined by those ranges, the application domain, is the entire space over which the empirical model is applied. One important assumption is that the model’s predictive behavior is consistent over the entire application domain. This assumption is commonly made for critical heat flux (CHF) models when they are applied in reactor safety analysis. The intention of this work is to demonstrate that the current assessment methods used to justify this assumption may not always identify subregions in the application domain where the model’s predictive capability is degraded. This is accomplished by intentionally placing a nonconservative subregion in a CHF model and demonstrating that the current assessment methods are unable to identify that nonconservative subregion. As the existence of a nonconservative subregion may impact reactor safety analysis, a new method is proposed that does identify the nonconservative subregion. This new method is a multidimensional approach capable of demonstrating if the CHF model’s predictive behavior is likely due to random effects or is due to a degraded predictive capability in a given subregion.