ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
S. M. Yakout
Nuclear Technology | Volume 189 | Number 3 | March 2015 | Pages 294-300
Technical Paper | Reprocessing | doi.org/10.13182/NT14-39
Articles are hosted by Taylor and Francis Online.
Radioactive element separation is of particular interest in nuclear technology. For this purpose, batch experiments were carried out in order to find the best separation conditions of uranium [U(VI)] and thorium [Th(IV)] from aqueous solution using rice straw activated carbon. The influence of pH and contact time on selective adsorption of U(VI) and Th(IV) was investigated. The results indicate that the velocity of these species from liquid phase to the surface of carbon is rapid enough. The reaction rate was fast, requiring only a short contact time of 40 min for U(VI) and 100 min for Th(IV). Sorption reaches maximum at pH 4 for Th(IV) and at pH 5.5 for U(VI). U(VI) and Th(IV) can be separated by the judicious controlling of pH and contact time. They can be separated from each other at pH 4 with different contact time [Th(IV) at lower time and U(VI) at 200 min]. Studies were conducted to examine the change in the adsorption behavior of U(VI) and Th(IV) on adsorbent as a function of employing different complexing agents of mineral and organic acids that are important in industrial and environmental processes, including hydrochloric, nitric, acetic, sulfuric, and phosphoric acids at 0.1M concentration. Acetic acid enhances U(VI) and Th(IV) uptake compared to mineral acids. These procedures may be useful in the separation of U(VI) and Th(IV) from natural or industrial samples containing these elements.