ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
J. Wallenius, M. Eriksson
Nuclear Technology | Volume 152 | Number 3 | December 2005 | Pages 367-381
Technical Paper | Accelerators | doi.org/10.13182/NT152-367
Articles are hosted by Taylor and Francis Online.
We have investigated neutronic properties of lead-bismuth-cooled accelerator-driven systems with different minor-actinide-based ceramic fuels (two composite oxides and one solid-solution nitride). Adopting a transuranic composition with 40% plutonium in the initial load, transmutation rates of higher actinides (americium and curium) equal to 265 to 285 kg/GW(thermal)yr are obtained. The smallest reactivity swing is provided by the magnesium oxide-based cercer fuel. The cercer cores, however, exhibit large coolant void worths, which is of concern in the case of gas bubble introduction into the core. Nitride and cermet cores are more stable with respect to void formation. The poorer neutron economy of the molybdenum-based cermet makes it difficult, however, to accommodate an inert matrix volume fraction exceeding 50%, a lower limit for fabricability. Higher plutonium fraction is thus required for the cermet, which would lead to lower actinide burning rates. The nitride core yields high actinide burning rates, low void worths, and acceptable reactivity losses.