ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
J. Wallenius, M. Eriksson
Nuclear Technology | Volume 152 | Number 3 | December 2005 | Pages 367-381
Technical Paper | Accelerators | doi.org/10.13182/NT152-367
Articles are hosted by Taylor and Francis Online.
We have investigated neutronic properties of lead-bismuth-cooled accelerator-driven systems with different minor-actinide-based ceramic fuels (two composite oxides and one solid-solution nitride). Adopting a transuranic composition with 40% plutonium in the initial load, transmutation rates of higher actinides (americium and curium) equal to 265 to 285 kg/GW(thermal)yr are obtained. The smallest reactivity swing is provided by the magnesium oxide-based cercer fuel. The cercer cores, however, exhibit large coolant void worths, which is of concern in the case of gas bubble introduction into the core. Nitride and cermet cores are more stable with respect to void formation. The poorer neutron economy of the molybdenum-based cermet makes it difficult, however, to accommodate an inert matrix volume fraction exceeding 50%, a lower limit for fabricability. Higher plutonium fraction is thus required for the cermet, which would lead to lower actinide burning rates. The nitride core yields high actinide burning rates, low void worths, and acceptable reactivity losses.