ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Benjamin C. Bowers, Bojan Petrovic
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 186-201
Technical Note | Radiation Transport and Protection | doi.org/10.13182/NT12-162
Articles are hosted by Taylor and Francis Online.
New computational methods in dose assessment and shielding calculations have drastically increased possible accuracy and resolution of the solution, while also increasing both memory demand and running time. In many cases, a trade-off must occur between these two parameters due to limited computational resources. This becomes prominent, particularly in hybrid deterministic-stochastic methods used for automated variance reduction, where the trade-off is additionally sought between the importance-generating deterministic portion and actual Monte Carlo simulations. This technical note examines this trade-off for the FW-CADIS methodology implemented in the MAVRIC (Monaco with Automated Variance Reduction using Importance Calculations) module of SCALE6, applying it to a simplified model of a power reactor. For the purposes of this study, the allowed total CPU time was held constant (12 and 48 h). It was found that improving the accuracy of the deterministic portion (within the single-processor limitation of the program version used) at the cost of reducing the available time for Monte Carlo was beneficial for the overall efficiency. While the analysis is specific to the selected problem, it is expected that the findings in a broader sense are relevant for other similar hybrid shielding methodologies and applications.