ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Kosuke Aizawa, Yoshitaka Chikazawa
Nuclear Technology | Volume 189 | Number 2 | February 2015 | Pages 143-151
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-161
Articles are hosted by Taylor and Francis Online.
Failed fuel detection for the Japan Sodium-cooled Fast Reactor (JSFR) has been studied. The present JSFR design adopts a selector-valve (SV) failed fuel detection and location (FFDL) system. In this study, a tagging-gas (Tag) FFDL (Tag-FFDL) system has been investigated as an alternative. Although the identification performance of the Tag-FFDL system has been demonstrated in small and medium-sized reactors, the Tag-FFDL system has not been demonstrated yet in a large reactor like JSFR, which has 1500-MW(electric) power and 562 core fuel subassemblies. Major issues of the JSFR Tag-FFDL system are affected by high-burnup fuel and large cover gas volume. High-burnup fuel leads to a large change of the isotope ratio, which is important for the detection performance of the Tag-FFDL system. Since the cover gas volume in JSFR is larger than that in previous reactors, the tagging-gas concentration in the cover gas is lower than that in previous reactors. Thus, a requirement of the background value is more strict in JSFR. This study investigates whether two issues of the Tag-FFDL system for JSFR would be solvable. Tag gas isotope change in a high-burnup condition has been evaluated regarding transmutation and fission gas release. Taking into account tag gas isotope change due to the high-burnup conditions and large cover gas space, JSFR tagging gas has been designed. The investigation results showed that the JSFR FFDL system can provide an identification capability for 672 subassemblies, which is larger than the number of subassemblies in JSFR combining tagging-gas and burnup estimation. In addition, an allowable background concentration of natural Kr and Xe in the cover gas has been evaluated.