ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Bobby E. Leonard
Nuclear Technology | Volume 152 | Number 3 | December 2005 | Pages 339-353
Technical Paper | Decontamination/Decommissioning | doi.org/10.13182/NT05-A3681
Articles are hosted by Taylor and Francis Online.
Interior surface deposition effects of vaporized radioactive aerosols are important in understanding their behavior in accident conditions such as the Japanese nuclear laboratory accident in 1999 and the Chernobyl nuclear power plant accident in 1986, where entire communities had to be abandoned because of surface contamination, and the hopefully unlikelihood of a terrorist dirty nuclear bomb attack. Airborne radon progeny offers an opportunity to study radioisotope surface deposition. A significant annual lung cancer rate is also attributed to airborne radon progeny in the interior domestic environment. Surface deposition rates influence the airborne progeny levels. Here, we report extensive 218Po deposition rates over typical air change rates (ACHs) from 0.02 to 1.0 h-1 for interior furnishings surfaces in a 0.283-m3 test chamber to supplement earlier reported deposition rates for interior wall, ceiling, and floor surfaces. In analyzing the deposition results from the different materials, it is found that they correlate in terms of roughness with relative static friction and aerodynamic shear stress. Extrapolation to perfectly smooth surfaces provides a good estimate of the Fick's law value. Contrary to prior radon analysis at higher air flow, where the Crump and Seinfeld (CS) turbulent deposition models seemed to fit, at low ACH below 0.5 h-1 the deposition data found excellent agreement with a new Brownian diffusive deposition model for laminar flow. A composite model using the Brownian diffusive laminar flow and the CS turbulent flow models provides an excellent fit to all data. These results provide insight into contamination issues relative to other airborne radioisotopes, with the relative effects being dependent on the airborne contaminant particle sizes and their respective diffusion coefficients as seen in the two deposition models.