ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Yoshihisa Nishi, Nobuyuki Ueda, Izumi Kinoshita, Ehud Greenspan
Nuclear Technology | Volume 152 | Number 3 | December 2005 | Pages 324-338
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT05-A3680
Articles are hosted by Taylor and Francis Online.
The encapsulated nuclear heat source (ENHS) is a modular reactor that was selected by the 1999 U.S. Department of Energy Nuclear Energy Research Initiative program as a candidate Generation IV reactor concept. It is a fast neutron spectrum reactor cooled by lead-bismuth eutectic using natural circulation. One of the unique features of the ENHS is that the fission-generated heat is transferred from the primary coolant to the secondary coolant through rectangular intermediate heat exchanger (IHX) channels. The decay heat is removed by the reactor vessel auxiliary cooling system (RVACS).Events of protected loss of heat sink (PLOHS) and unprotected transient overpower (UTOP) have been analyzed for the ENHS using the CERES transient simulation code for liquid-metal-cooled reactors.It is found that the ENHS core is sufficiently cooled by the RVACS under the PLOHS condition. The core flow rate is affected by the growth and disappearance of temperature stratification in the primary plenum. It is also found that even under the inconceivable UTOP event considered, the ENHS reactor core is not catastrophically damaged. This is due to negative reactivity feedback from the radial expansion of the core, the grid plate, and the Doppler effect. The use of high-performance ferritic steel instead of HT-9 and proper design of the reactor control system could provide large safety margins against cladding damage.