ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
Matthew P. Simones, Sudarshan K. Loyalka
Nuclear Technology | Volume 189 | Number 1 | January 2015 | Pages 45-62
Technical Paper | Reactor Safety | doi.org/10.13182/NT14-14
Articles are hosted by Taylor and Francis Online.
In high-temperature gas-cooled reactors (HTGRs), an improved understanding of the production of carbonaceous dust (e.g., by abrasion, corrosion, radiation damage, and gas-to-particle conversion) and the subsequent transport of the dust and associated sorbed fission products is needed. Diffusion charging and/or self-charging of the suspended dust particles (aerosol) is likely to occur, which affects how the aerosol evolves in time and ultimately deposits on surfaces. At present, nuclear reactor safety codes, such as MELCOR, do not account for these effects and there is currently no consensus on their importance, partly due to a lack of experimental data as well as tools for computations. Further experimentation and modeling of these effects are therefore needed to resolve these issues. We report on an experimental investigation of the coagulation of charged aerosols pertinent to HTGRs by measuring the evolution of size and charge distributions over time and comparing the experimental results with computations using the direct simulation Monte Carlo method. Measurements have been completed for both silver and carbon ultrafine aerosols using a tandem differential mobility analyzer and an open-flow coagulation chamber with a residence time of nearly 400 s. Results for both aerosols indicate that coagulation occurs faster than predicted by the simulations, at times differing by an order of magnitude. While the paper is focused on specific aerosols, it is of wider significance in that it provides the first such comparisons between data and simulations on charged aerosol coagulation.