ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
INL makes a case for eliminating ALARA and setting higher dose limits
A report just released by Idaho National Laboratory reviews decades of radiation protection standards and research on the health effects of low-dose radiation and recommends that the current U.S. annual occupational dose limit of 5,000 mrem be maintained without applying ALARA—the “as low as reasonably achievable” regulatory concept first introduced in 1971—below that threshold.
Noting that epidemiological studies “have consistently failed to demonstrate statistically significant health effects at doses below 10,000 mrem delivered at low dose rates,” the report also recommends “future consideration of increasing this limit to 10,000 mrem/year with appropriate cumulative-dose constraints.”
J. S. Baek, A. Cuadra, L.-Y. Cheng, A. L. Hanson, N. R. Brown, D. J. Diamond
Nuclear Technology | Volume 189 | Number 1 | January 2015 | Pages 71-86
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-124
Articles are hosted by Taylor and Francis Online.
A program is underway to convert the current high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel in the 20-MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology. A RELAP5 model has been developed to analyze postulated accidents in the NBSR with the present HEU fuel and a proposed LEU fuel. The model includes the reactor vessel, primary pumps, shutdown pumps, various valves, heat exchangers, and average and hottest fuel elements and flow channels in the region where flow enters through an inner plenum (6 fuel elements) and a region where flow enters through an outer plenum (24 elements). The equilibrium cycle power distributions in the fuel elements were determined based on three-dimensional Monte Carlo neutron transport calculations performed with the MCNPX code. In this paper we discuss safety analyses conducted for the loss-of-flow accidents resulting from either loss of electrical power or inadvertent throttling of flow control valves at the inlets to the inner and outer plena. The analysis shows that the fuel conversion will not lead to significant changes in the safety analysis and that the calculated maximum clad temperatures, minimum critical heat flux ratios, and minimum onset of flow instability ratios assure that there is adequate margin to fuel failure.