ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Yoshitaka Chikazawa, Mamoru Konomura, Shouji Uchida, Hiroyuki Sato
Nuclear Technology | Volume 152 | Number 3 | December 2005 | Pages 266-272
Technical Paper | Fission Reactors | doi.org/10.13182/NT05-A3675
Articles are hosted by Taylor and Francis Online.
A thermal source for hydrogen production is an attractive utilization of nuclear energy. Hydrogen production from natural gas is a promising method in an early stage of hydrogen society, though hydrogen production with water splitting without carbon dioxide emission is the final goal. Steam methane reforming is a well-known method for producing hydrogen from natural gas. A hydrogen separation membrane makes the reforming temperature much lower than that of the equilibrium condition, and a sodium-cooled fast reactor, which supplies heat at ~500°C, can be used as a heat source for hydrogen production.In this study, a hydrogen production plant with the membrane reforming method using a sodium-cooled reactor as a thermal source has been designed, and its economic potential is roughly evaluated. The hydrogen production cost is estimated to be about $1.67/kg, achieving the economic target of $1.7/kg. The construction cost is largely shared by the reformers' cost, and it can be decreased using a more efficient hydrogen separation membrane. This shows that steam methane reforming hydrogen production with a sodium-cooled reactor has high economical potential.