ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
W. Yao, D. Bestion, P. Coste, M. Boucker
Nuclear Technology | Volume 152 | Number 1 | October 2005 | Pages 129-142
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT05-A3665
Articles are hosted by Taylor and Francis Online.
A three-dimensional (3-D) two-fluid model for a turbulent stratified flow with and without condensation is presented, in view of investigating pressurized thermal shock (PTS) scenarios when a stratified two-phase flow takes place in the cold legs of a pressurized water reactor. A modified turbulent K-[curly epsilon] model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on an interfacial sublayer concept and three interfacial heat transfer models - namely, a model based on the small eddies-controlled surface renewal concept, a model based on the asymptotic behavior of the eddy viscosity, and a model based on the interfacial sublayer concept - are implemented into a preliminary version of the NEPTUNE code based on the 3-D module of the CATHARE code. As a first step, the models are evaluated by comparison of calculated profiles of velocity, turbulent kinetic energy, and turbulent shear stress with data in a turbulent air-water stratified flow in a rectangular channel and with data for a water jet impacting the free surface of a water pool. Then, a turbulent steam-water stratified flow with condensation is calculated, and some first conclusions are drawn on the interfacial heat transfer modeling and on the applicability of the model to PTS investigations.