ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Jong Chull Jo, Myung Jo Jhung, Woong Sik Kim, Hho Jung Kim
Nuclear Technology | Volume 152 | Number 1 | October 2005 | Pages 118-128
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT05-A3664
Articles are hosted by Taylor and Francis Online.
This paper presents an approach to the remaining life prediction of steam generator (SG) U-tubes, which are intact initially, subjected to fretting-wear degradation due to the interaction between a vibrating tube and a foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from a three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element models of U-tubes to get the natural frequency, corresponding mode shape, and participation factor. The wear rate of a U-tube caused by a foreign object is calculated using the Archard formula, and the remaining life of the tube is predicted. Also discussed in this study are the effects of the tube modal characteristics, external flow velocity, and tube internal pressure on the estimated results of the remaining life of the tube.