ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
M. Eriksson, J. Wallenius, M. Jolkkonen, J. E. Cahalan
Nuclear Technology | Volume 151 | Number 3 | September 2005 | Pages 314-333
Technical Paper | Accelerators | doi.org/10.13182/NT05-A3654
Articles are hosted by Taylor and Francis Online.
Transient safety characteristics of accelerator-driven systems using advanced minor actinide fuels have been investigated. Results for a molybdenum-based Ceramic-Metal (CerMet) fuel, a magnesia-based Ceramic-Ceramic fuel, and a zirconium-nitride-based fuel are reported. The focus is on the inherent safety aspects of core design. Accident analyses are carried out for the response to unprotected loss-of-flow and accelerator beam-overpower transients and coolant voiding scenarios. An attempt is made to establish basic design limits for the fuel and cladding. Maximum temperatures during transients are determined and compared with design limits. Reactivity effects associated with coolant void, fuel and structural expansion, and cladding relocation are investigated. Design studies encompass variations in lattice pitch and pin diameter. Critical mass studies are performed. The studies indicate favorable inherent safety features of the CerMet fuel. Major consideration is given to the potential threat of coolant voiding in accelerator-driven design proposals. Results for a transient test case study of a postulated steam generator tube rupture event leading to extensive coolant voiding are presented. The study underlines the importance of having a low coolant void reactivity value in a lead-bismuth system despite the high boiling temperature of the coolant. It was found that the power rise following a voiding transient increases dramatically near the critical state. The studies suggest that a reactivity margin of a few dollars in the voided state is sufficient to permit significant reactivity insertions.