ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Sanjay Krishnarao Sali, Donal Marshal Noronha, Hemakant Ramkrishna Mhatre, Murlidhar Anna Mahajan, Keshav Chander, Suresh Kumar Aggarwal, Venkatarama Venugopal
Nuclear Technology | Volume 151 | Number 3 | September 2005 | Pages 289-296
Technical Paper | Reprocessing | doi.org/10.13182/NT05-A3651
Articles are hosted by Taylor and Francis Online.
A novel methodology has been developed for the recovery of Pu from different types of waste solutions generated during various operations involved in the chemical quality control/assurance of nuclear fuels. The method is based on the precipitation of Pu as ammonium plutonium(III)-oxalate and involves the adjustment of acidity of the Pu solution to 1 N, the addition of ascorbic acid (0.05 M) to reduce Pu to Pu(III), followed by the addition of (NH4)2SO4 (0.5 M) and a stoichiometric amount of saturated oxalic acid maintaining a 0.2 M excess of oxalic acid concentration in the supernatant. The precipitate was characterized by X-ray powder diffraction and thermal and chemical analysis and was found to have the composition NH4Pu(C2O4)23H2O. This compound can be easily decomposed to PuO2 on heating in air at 823 K. Decontamination factors of U, Fe, and Cr determined showed quantitative removal of these ions during the precipitation of Pu as ammonium plutonium(III)-oxalate.A semiautomatic assembly based on the transfer of solutions by suction arrangement was designed and fabricated for processing large volumes of Pu solution. This assembly reduced the corrosion of the glove-box material and offered the advantage of lower radiation exposure to the working personnel.