ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Sanjay Krishnarao Sali, Donal Marshal Noronha, Hemakant Ramkrishna Mhatre, Murlidhar Anna Mahajan, Keshav Chander, Suresh Kumar Aggarwal, Venkatarama Venugopal
Nuclear Technology | Volume 151 | Number 3 | September 2005 | Pages 289-296
Technical Paper | Reprocessing | doi.org/10.13182/NT05-A3651
Articles are hosted by Taylor and Francis Online.
A novel methodology has been developed for the recovery of Pu from different types of waste solutions generated during various operations involved in the chemical quality control/assurance of nuclear fuels. The method is based on the precipitation of Pu as ammonium plutonium(III)-oxalate and involves the adjustment of acidity of the Pu solution to 1 N, the addition of ascorbic acid (0.05 M) to reduce Pu to Pu(III), followed by the addition of (NH4)2SO4 (0.5 M) and a stoichiometric amount of saturated oxalic acid maintaining a 0.2 M excess of oxalic acid concentration in the supernatant. The precipitate was characterized by X-ray powder diffraction and thermal and chemical analysis and was found to have the composition NH4Pu(C2O4)23H2O. This compound can be easily decomposed to PuO2 on heating in air at 823 K. Decontamination factors of U, Fe, and Cr determined showed quantitative removal of these ions during the precipitation of Pu as ammonium plutonium(III)-oxalate.A semiautomatic assembly based on the transfer of solutions by suction arrangement was designed and fabricated for processing large volumes of Pu solution. This assembly reduced the corrosion of the glove-box material and offered the advantage of lower radiation exposure to the working personnel.