ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Michael Todosow, A. Galperin, S. Herring, M. Kazimi, T. Downar, A. Morozov
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 168-176
Technical Paper | Advances in Nuclear Fuel Management - Use of Alternate Fuels in Light Water Reactors | doi.org/10.13182/NT151-168
Articles are hosted by Taylor and Francis Online.
Thorium-based fuels can be used to reduce concerns related to the proliferation potential and waste disposal of the conventional light water reactor (LWR) uranium fuel cycle. The main sources of proliferation potential and radiotoxicity are the plutonium and higher actinides generated during the burnup of standard LWR fuel. A significant reduction in the quantity and quality of the generated Pu can be achieved by replacing the 238U fertile component of conventional low-enriched uranium fuel by 232Th. Thorium can also be used as a way to manage the growth of plutonium stockpiles by burning plutonium, or achieving a net-zero transuranic production, sustainable recycle scenario. This paper summarizes some of the results of recent studies of the performance of thorium-based fuels.It is concluded that the use of heterogeneous U-Th fuel provides higher neutronic potential than a homogeneous fuel. However, in the former case, the uranium portion of the fuel operates at a higher power density, and care is needed to meet the thermal margins and address the higher-burnup implications. In macroheterogeneous designs, the U-Th fuel can yield reduced spent-fuel volume, toxicity, and decay heat. The main advantage of Pu-Th oxide over mixed oxide is better void reactivity behavior even for undermoderated designs, and increased burnup of Pu.