ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Michael Todosow, A. Galperin, S. Herring, M. Kazimi, T. Downar, A. Morozov
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 168-176
Technical Paper | Advances in Nuclear Fuel Management - Use of Alternate Fuels in Light Water Reactors | doi.org/10.13182/NT151-168
Articles are hosted by Taylor and Francis Online.
Thorium-based fuels can be used to reduce concerns related to the proliferation potential and waste disposal of the conventional light water reactor (LWR) uranium fuel cycle. The main sources of proliferation potential and radiotoxicity are the plutonium and higher actinides generated during the burnup of standard LWR fuel. A significant reduction in the quantity and quality of the generated Pu can be achieved by replacing the 238U fertile component of conventional low-enriched uranium fuel by 232Th. Thorium can also be used as a way to manage the growth of plutonium stockpiles by burning plutonium, or achieving a net-zero transuranic production, sustainable recycle scenario. This paper summarizes some of the results of recent studies of the performance of thorium-based fuels.It is concluded that the use of heterogeneous U-Th fuel provides higher neutronic potential than a homogeneous fuel. However, in the former case, the uranium portion of the fuel operates at a higher power density, and care is needed to meet the thermal margins and address the higher-burnup implications. In macroheterogeneous designs, the U-Th fuel can yield reduced spent-fuel volume, toxicity, and decay heat. The main advantage of Pu-Th oxide over mixed oxide is better void reactivity behavior even for undermoderated designs, and increased burnup of Pu.