ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Robert Gregg, Andrew Worrall
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 126-132
Technical Paper | Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization | doi.org/10.13182/NT05-A3638
Articles are hosted by Taylor and Francis Online.
A study of high-burnup pressurized water reactor (PWR) fuel management schemes extending to 100 GWd/tonne is presented. The Studsvik Scandpower code suite was used to model a Westinghouse three-loop PWR core, and realistic loading patterns were derived. The loading patterns were optimized for minimum power peaking and maximum cycle length using engineering judgment and automated binary shuffles. Gadolinia was found to control power peaking to within current FH design limits up to 70 GWd/tonne, with only a slight deterioration thereafter. The moderator temperature coefficient, boron coefficient, and control rod worth were calculated and shown to fall within existing design limits.An economic analysis was carried out to determine the most economic discharge burnup based on fuel cycle costs only. It was found that the lowest fuel cycle costs were obtained with average discharge burnups between 70 to 75 GWd/tonne (initial enrichments between 6 to 7 wt%).The energy generated per tonne of uranium ore used was calculated and shown to peak between 40 to 60 GWd/tonne. Also, the radiotoxicity generated per GWyr(electric) was calculated for each fuel management scheme and found to reduce considerably with burnup between 100 and 100 000 yr.