ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Robert Gregg, Andrew Worrall
Nuclear Technology | Volume 151 | Number 2 | August 2005 | Pages 126-132
Technical Paper | Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization | doi.org/10.13182/NT05-A3638
Articles are hosted by Taylor and Francis Online.
A study of high-burnup pressurized water reactor (PWR) fuel management schemes extending to 100 GWd/tonne is presented. The Studsvik Scandpower code suite was used to model a Westinghouse three-loop PWR core, and realistic loading patterns were derived. The loading patterns were optimized for minimum power peaking and maximum cycle length using engineering judgment and automated binary shuffles. Gadolinia was found to control power peaking to within current FH design limits up to 70 GWd/tonne, with only a slight deterioration thereafter. The moderator temperature coefficient, boron coefficient, and control rod worth were calculated and shown to fall within existing design limits.An economic analysis was carried out to determine the most economic discharge burnup based on fuel cycle costs only. It was found that the lowest fuel cycle costs were obtained with average discharge burnups between 70 to 75 GWd/tonne (initial enrichments between 6 to 7 wt%).The energy generated per tonne of uranium ore used was calculated and shown to peak between 40 to 60 GWd/tonne. Also, the radiotoxicity generated per GWyr(electric) was calculated for each fuel management scheme and found to reduce considerably with burnup between 100 and 100 000 yr.