ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Serkan Yilmaz, Kostadin Ivanov, Samuel Levine, Moussa Mahgerefteh
Nuclear Technology | Volume 151 | Number 1 | July 2005 | Pages 86-95
Technical Paper | Advances in Nuclear Fuel Management - Light Water Reactor Reloading Optimization | doi.org/10.13182/NT05-A3634
Articles are hosted by Taylor and Francis Online.
The principal focus of this work is on developing a practical tool for designing the minimum amount of burnable poisons (BPs) for a pressurized water reactor using a typical Three Mile Island Unit 1 2-yr cycle as the reference design. The results of this study are to be applied to future reload designs. A new method, the Modified Power Shape Forced Diffusion (MPSFD) method, is presented that initially computes the BP cross section to force the power distribution into a desired shape. The method employs a simple formula that expresses the BP cross section as a function of the difference between the calculated radial power distributions (RPDs) and the limit set for the maximum RPD. This method places BPs into all fresh fuel assemblies (FAs) having an RPD greater than the limit. The MPSFD method then reduces the BP content by reducing the BPs in fresh FAs with the lowest RPDs. Finally, the minimum BP content is attained via a heuristic fine-tuning procedure.This new BP design program has been automated by incorporating the new MPSFD method in conjunction with the heuristic fine-tuning program. The program has automatically produced excellent results for the reference core, and has the potential to reduce fuel costs and save manpower.