ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
Staffan Jacobsson Svärd, Ane Håkansson, Anders Bäcklin, Otasowie Osifo, Christopher Willman, Peter Jansson
Nuclear Technology | Volume 151 | Number 1 | July 2005 | Pages 70-76
Technical Paper | Advances in Nuclear Fuel Management - Core Physics and Fuel Management Methods, Analytical Tools, and Benchmarks | doi.org/10.13182/NT05-A3632
Articles are hosted by Taylor and Francis Online.
A need for validation of modern production codes with respect to the calculated pin-power distribution has been recognized. A nondestructive experimental method for such validation has been developed based on a tomographic technique. The gamma-ray flux distribution is recorded in each axial node of the fuel assembly separately, whereby the relative rod-by-rod content of the fission product 140Ba is determined. Measurements indicate that 1 to 2% accuracy (1) is achievable.A device has been constructed for in-pool measurements at reactor sites. The applicability has been demonstrated in measurements at the Swedish boiling water reactor (BWR) Forsmark 2 on irradiated fuel with a cooling time of 4 to 5 weeks. Data from the production code POLCA-7 have been compared to measured rod-by-rod contents of 140Ba. An agreement of 3.1% (1) has been demonstrated.It is estimated that measurements can be performed on a complete BWR assembly in 25 axial nodes within an 8-h work shift. As compared to the conventional method, involving gamma scanning of individual fuel rods, this method does not require the fuel to be disassembled nor does the fuel channel have to be removed. The cost per measured fuel rod is estimated to be an order of magnitude lower than the conventional method.