ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Shunsuke Uchida, Masanori Naitoh, Hiroaki Suzuki, Hidetoshi Okada, Satoshi Konishi
Nuclear Technology | Volume 188 | Number 3 | December 2014 | Pages 252-265
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-152
Articles are hosted by Taylor and Francis Online.
As a result of the mass balance analysis for fission products (FPs) in the contaminated water accumulated in the Fukushima Daiichi nuclear power plant in the aftermath of the accident, it was concluded that the short-term cesium source was 50% of the total amount of cesium accumulated in the reactor, which was estimated with the SAMPSON severe accident analysis code, while the short-term source of tritium was 26% of the total tritium that was released during the UO2 fuel meltdown. The FP concentrations in the contaminated water during the 2 yr since the accident were determined by short-term FP sources, while their saturated concentrations, due to a balance between the release from the reactor and the cleanup, were determined by long-term FP sources. A multinuclei removal system, ALPS, has been operated at the plant to clean up the contaminated water to reduce FP concentrations to a level that is permitted for release to the environment. Tritium concentration in the contaminated water decreased a little during the 2 yr since the accident primarily from dilution by mixing groundwater rather than intentional removal. Industrial-scale removal of tritium from the huge amount of contaminated water is almost impossible using isotopic separation methods. Storage of tritiated water for a long period presents a high risk for leakage to the environment. As the most realistic procedure, the authors propose that the tritium be diluted with plenty of seawater to the natural background level and then be released into the ocean with continuous monitoring at the release point.