ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Georgeta Radulescu, Ian C. Gauld, Germina Ilas, John C. Wagner
Nuclear Technology | Volume 188 | Number 2 | November 2014 | Pages 154-171
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-154
Articles are hosted by Taylor and Francis Online.
This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of criticality safety analysis models by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in the effective neutron multiplication factor. Application of the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with Standardized Computer Analyses for Licensing Evaluation (SCALE) 6.1 and the Evaluated Nuclear Data File/B (ENDF/B) Version VII nuclear data. The validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance (ISG)-8.