ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
The U.S. Million Person Study of Low-Dose-Rate Health Effects
There is a critical knowledge gap regarding the health consequences of exposure to radiation received gradually over time. While there is a plethora of studies on the risks of adverse outcomes from both acute and high-dose exposures, including the landmark study of atomic bomb survivors, these are not characteristic of the chronic exposure to low-dose radiation encountered in occupational and public settings. In addition, smaller cohorts have limited numbers leading to reduced statistical power.
Adrienne L. Lehnert, Kimberlee J. Kearfott
Nuclear Technology | Volume 188 | Number 1 | October 2014 | Pages 97-111
Technical Paper | Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-125
Articles are hosted by Taylor and Francis Online.
Fast neutron interrogation for explosives detection has shown potential for the screening of sea-land cargo containers. Simulations were completed investigating the neutron scatter behavior of 14.1-MeV fast neutrons in such screening scenarios. Earlier efforts centered on Monte Carlo (MCNP5) simulations to identify flags or on specific calculations based on photons or neutrons produced as a result of fast neutron interaction that signal the presence of the explosive RDX (C2H6N6O6). Those simulations consisted of simplified target geometry; artificially collimated neutron source; and generalized organic, hydrogenous, or metallic types of cargo materials. In this study, the MCNP5 simulation was expanded to include a more accurate representation of the neutron source, target geometry, detector response, and realistic and varied container contents. The flags found using the earlier simulations were applied to the more realistic scenario models in order to determine the feasibility of the use of flags in a detection algorithm. Additional flags utilizing the simulated detector response were also investigated. The conditions under which specific flags were preferable were also examined. It was found that many flags performed well independent of the cargo type while others, such as those using only neutron backscatter, were more highly dependent on cargo type. Furthermore, many of the best-performing flags were those that did not require stringent neutron spectroscopy and would therefore be feasible with existing technology.