ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Milorad Dusic, Mark Dutton, Horst Glaeser, Joachim Herb, Javier Hortal, Rafael Mendizábal, Fernando Pelayo
Nuclear Technology | Volume 188 | Number 1 | October 2014 | Pages 63-77
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-16
Articles are hosted by Taylor and Francis Online.
In 2009 the International Atomic Energy Agency (IAEA) published “Deterministic Safety Analysis for Nuclear Power Plants Specific Safety Guide,” Specific Safety Guide No. SSG-2 (hereinafter referred to as SSG-2). SSG-2 addresses four options for the application of deterministic safety analyses. Option 1, which has been used since the early days of civil nuclear power and is still used today, uses conservative codes/models and conservative initial and boundary (I&B) conditions. Option 2, which is frequently used worldwide, uses realistic codes/models but with conservative I&B conditions. Option 3 uses realistic codes/models and realistic I&B conditions and therefore needs also to consider the associated uncertainties. Today, option 3 is known as the Best Estimate Plus Uncertainty option. Option 4 is not developed in SSG-2 and only indicates that option 4 is an attempt to combine insights from probabilistic safety analyses with a deterministic approach, which results in a risk-informed safety analysis. In options 1, 2, and 3, the availability of safety systems is based on conservative assumptions, whereas in option 4, the availability of safety systems is derived by probabilistic means. This paper explains in more detail the approach proposed for option 4 and provides illustrative examples for its application, recognizing the fact that option 4 is still a research option and will remain so for some time.