ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Rodolfo Vaghetto, Yassin A. Hassan
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 282-293
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-130
Articles are hosted by Taylor and Francis Online.
The Very High Temperature Gas-Cooled Reactor (VHTR) is one of the next-generation nuclear reactors designed to achieve high temperatures to support industrial applications and power generation. Because of the high temperature reached during normal operation, new safety features were added to its design. The reactor cavity cooling system (RCCS) is a passive safety system that will be incorporated in the VTHR. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady state) and accident scenarios. A small-scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the thermal-hydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates. A steady-state experimental run was conducted to study the behavior of the coolant under this condition. The experimental results obtained confirmed the capabilities of the system in removing the heat from the cavity and helped in identifying phenomena that may occur in this type of passive system.