ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
Rodolfo Vaghetto, Yassin A. Hassan
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 282-293
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-130
Articles are hosted by Taylor and Francis Online.
The Very High Temperature Gas-Cooled Reactor (VHTR) is one of the next-generation nuclear reactors designed to achieve high temperatures to support industrial applications and power generation. Because of the high temperature reached during normal operation, new safety features were added to its design. The reactor cavity cooling system (RCCS) is a passive safety system that will be incorporated in the VTHR. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady state) and accident scenarios. A small-scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the thermal-hydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates. A steady-state experimental run was conducted to study the behavior of the coolant under this condition. The experimental results obtained confirmed the capabilities of the system in removing the heat from the cavity and helped in identifying phenomena that may occur in this type of passive system.